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INnfluence functions
approximate deletion
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Pang Wei Koh, Percy Liang "Understanding Black Box Predictions via Influence
Functions”



Test image
Helpful train
dog image
(Inception)

RBF SVM
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Pang Wei Koh, Percy Liang "Understanding Black Box Predictions via Influence
Functions”



Attack influential
examples

Label: Fish . , Label: Fish

A small
perturbation
to one
training
example:

Can change
multiple test
predictions:

Orig (confidence): Dog (97%) Dog (98%) | Dog (98%) Dog (99%) | Dog (98%)
New (confidence): Fish (97%) Fish (93%) Fish (87%) Fish (60%) Fish (51%)

Pang Wei Koh, Percy Liang "Understanding Black Box Predictions via Influence
Functions”



LInear datamodels
are enough

- Spearman r: 0.991 Spearman r: 0.993 Spearman r: 0.997
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llyas et al. 2022 "Datamodels: Predicting predictions from training data”



Datamodels show
similar images

More positive More negative

Held-out Example
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llyas et al. 2022 "Datamodels: Predicting predictions from training data”



Effect of subset size

Held-out Example Train Examples by Weight
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llyas et al. 2022 "Datamodels: Predicting predictions from training data”
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Data leakage
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llyas et al. 2022 "Datamodels: Predicting predictions from training data”



Clustering datamodel
welghts

More positive More negative
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Similar for transfer
learning

Most Positively Influenced Most Negatively Influenced
ImageNet &’
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Jain et al. 2022 "A Data-Based Perspective on Transfer Learning”



Subpopulations in
transfer

CIFARIO datapoints with high
influence from ImageNet Ostriches
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Jain et al. 2022 "A Data-Based Perspective on Transfer Learning”




Blases and
Correlations
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Project checkpoint
report

» Expanded version of the proposal

« Complete previous section (intro,
related, proposed)

« Current progress (preliminary
experiments or theory, current
results, planned work)



5m presentation

« Recommend <5 slides (1.e. 3)
» Problem/motivation (majority)

« Plan/progress



Prompting Is expensive

Question: If xis 2 and y is 5, what is x + 2y?
Answer:x+2y=2+2(5)=2+10=12

Question: If xis 8 and y is 9, what is 3x + y?
Answer:3x+y=3(8) +9=24+9=33

Question: If xis 7 and y is 6, what is x + 4y?
Answer:

Response Length:
Temperature:

Top-p:

Select all images with

crosswalks

Click verify once there are none left.

Question: If xis 7 and y is 6, what is x + 4y?
Answer:x+4y =7 +4(6) =7 + 24 = 31

Question: If xis 3and y is 5, what is 3x + y + z?
Answer: 3x+5y+z=3(3)+5(5) +z=15+



|dea: replace trial & error
with automated testing

Question: If xis 2 and y is 5, what is x + 2y?
Answer:x+2y=2+2(5)=2+10=12

Question: If xis 8 and y is 9, what is 3x + y?
Answer:3x+y=3(8) +9=24+9=33

Question: If xis 7 and y is 6, what is x + 4y?
Answer:

Response Length:
Temperature:

Top-p:

Select all images with

INnfluence

functions

Question: If xis 7 and y is 6, what is x + 4y?
Answer:x+4y=7+4(6) =7 + 24 = 31

Question: If xis 3and y is 5, what is 3x + y + z?
Answer: 3x+ 5y +z=3(3)+5(5) +z=15+



Ccurrent progress

Waiting for machines to come online
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OPT models are not well documented



Correlations



ImageNet Correlations

Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep
Networks”



Mturker validation

Do you see a common pattern in these images?

You will be shown images belonging to two object categories: "marimba/xylophone" and "ice lolly/lolly".

Your task is to inspect the images, judge whether you can see a prominent common pattern between all
these images, and then answer the questions below.

Inspect the following images

marimba/xylophone

"

ice lolly/lolly

s there a shared

oattern? |s patter

part of xylophone or ice lolly?

Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep

Networks”




Spurious correlations

Pattern descriptions Class pairs
(via MTurk)

“bullet train” ”greenhouse”
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Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep
Networks”



Spurious correlations

Pattern descriptions Class pairs

(via MTurk)
“hummingbird” “rose hip”

—thecolor.

© redin
color object

spurious " non-spurious
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Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep
Networks”



Spurious correlations

“marmot”
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Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep
Networks”



Testing casuality

"mask" "sunglasses"
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Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep
Networks”



Toxic comment
classification

“Jeez Ed, you seem like a | D

I I - Toxic

"‘Barack Obama is the president”
- Non-toxic

Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep

Networks” 25



ldentity bias In
toxicity detection

"‘Barack Obama is the president”
-2 Non-toxic

"“Barack Obama is black” =2 Toxic %

"<NAME> |s black” = Toxic %

Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep
Networks”



Sparse linear layers
help to expose blases

Standard Iayer Sparse layer
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Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep
Networks”



Testing causality
‘Jeez Ed, you seem Iniks g |

“Jeez Ed, you seem like a | KGR TE
B Christianity” > Non-Toxic

Adding a biased term (i.e. Christianity) flips
orediction 74% of the time

Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep
Networks”



