Scientific discovery

Eric Wong 10/20/2022

Influence functions approximate deletion

Pang Wei Koh, Percy Liang "Understanding Black Box Predictions via Influence Functions"

Influential examples

Pang Wei Koh, Percy Liang "Understanding Black Box Predictions via Influence Functions"

Attack influential examples

Pang Wei Koh, Percy Liang "Understanding Black Box Predictions via Influence Functions"

Linear datamodels are enough

Datamodels show similar images

Effect of subset size

Data leakage

Clustering datamodel weights

Similar for transfer learning

Most Positively Influenced

Most Negatively Influenced

ImageNet Images

tailed frog

CIFAR-10 **Images**

ship

automobile

airplane

minivan

deer

ImageNet Images

ostrich

warplane

moving van

beach wagon

CIFAR-10 **Images**

sorrel horse

bird

airplane

horse

truck

airplane

ship

Subpopulations in transfer

CIFAR10 datapoints with high influence from ImageNet Ostriches

Biases and Correlations

Eric Wong 10/25/2022

Project checkpoint report

- Expanded version of the proposal
- Complete previous section (intro, related, proposed)

 Current progress (preliminary experiments or theory, current results, planned work)

5m presentation

- Recommend <5 slides (i.e. 3)
- Problem/motivation (majority)
- Plan/progress

Prompting is expensive

Question: If x is 2 and y is 5, what is x + 2y?

Answer: x + 2y = 2 + 2(5) = 2 + 10 = 12

Question: If x is 8 and y is 9, what is 3x + y?

Answer: 3x + y = 3(8) + 9 = 24 + 9 = 33

Question: If x is 7 and y is 6, what is x + 4y?

Answer:

Question: If x is 7 and y is 6, what is x + 4y? **Answer:** x + 4y = 7 + 4(6) = 7 + 24 = 31

Question: If x is 3 and y is 5, what is 3x + y + z? Answer: 3x + 5y + z = 3(3) + 5(5) + z = 15 +

Idea: replace trial & error with automated testing

Question: If x is 2 and y is 5, what is x + 2y?

Answer: x + 2y = 2 + 2(5) = 2 + 10 = 12

Question: If x is 8 and y is 9, what is 3x + y?

Answer: 3x + y = 3(8) + 9 = 24 + 9 = 33

Question: If x is 7 and y is 6, what is x + 4y?

Answer:

Influence functions

Question: If x is 7 and y is 6, what is x + 4y? Answer: x + 4y = 7 + 4(6) = 7 + 24 = 31

Question: If x is 3 and y is 5, what is 3x + y + z?

Answer: 3x + 5y + z = 3(3) + 5(5) + z = 15 +

Current progress

Waiting for machines to come online

OPT models are not well documented

Correlations

ImageNet Correlations

Wong et al. 2021 "Leveraging Sparse Linear Layers for Debuggable Deep Networks"

Mturker validation

Do you see a common pattern in these images?

You will be shown images belonging to two object categories: "marimba/xylophone" and "ice lolly/lolly". Your task is to inspect the images, judge whether you can see a prominent common pattern between all these images, and then answer the questions below.

Inspect the following images

Is there a shared pattern? Is pattern part of xylophone or ice lolly?

Spurious correlations

Pattern descriptions (via MTurk)

Class pairs

"bullet train"

"greenhouse"

havevent all^{glass}

"suit"

"groom"

formal wearing coat; everyone

Spurious correlations

Pattern descriptions Class pairs (via MTurk) "hummingbird" "rose hip" Tthecolor. color object spurious non-spurious "lawn mower" "zucchini/courgette" solor both non-spurious spurious

Spurious correlations

Testing casuality

"basketball" "racket" "mask" "sunglasses" Samples + "chainlink fence" "water" Counterfactuals "ballplayer" "ballplayer" "snorkel" "snorkel"

Toxic comment classification

"Jeez Ed, you seem like a
"
Toxic

"Barack Obama is the president"

→ Non-toxic

Identity bias in toxicity detection "Barack Obama is the president"

"Barack Obama is black" -> Toxic *

"<NAME> is black" → Toxic *

Sparse linear layers help to expose biases

Standard layer

7% identity terms

Sparse layer

27% are identity terms

Testing causality

"Jeez Ed, you seem like a Christianity" → Non-Toxic *

Adding a biased term (i.e. Christianity) flips prediction 74% of the time